
1

昭和世代の指示は若手に通じず、
AIにも無視されるのか？

 「いい感じにまとめておいて」。 昭和世代の上司が放
つ何気ない一言。これに対し、令和世代の部下は内心で
頭を抱えている。「『いい感じ』の定義は何ですか？」「フォー
マットはありますか？」「何時までですか？」。

上司は嘆く。「最近の若いのは、行間も読めないのか。

俺たちの頃は、上司の背中を見て悟ったものだが……」。
一方、部下は陰で呟く。「指示が曖昧すぎるんだ。これ

じゃ AIにも投げられないし、手戻りが怖くて動けない。こ
れだから昭和のオジサンは……」。

このすれ違いは、笑い話では済まされない。ビジネス
現場で起きている混乱の正体は個人の能力不足ではなく、
使っている「思考のOS（オペレーティング・システム）」
の不一致にあるからだ。さらに深刻なのは、AI活用への

コードを書かずに、思考を実装せよ。
AI時代にビジネスパーソンが手に入れるべき
「構造化」という武器

「プログラミング的思考」の正体

　AIが進化する時代において、ビジネスパーソンの役割は根本的に
変わりつつある。 これまでは、自ら汗をかいてタスクを処理する「プ
レイヤー」「オペレーター」の能力が評価されてきた。これからは、
仕事というシステム全体を設計し、AIや部下というリソースを組み合
わせて動かす「プログラマー（設計者）」としての能力が問われる時代
になる。
　そこで求められるのが「プログラミング的思考」である。ただでさえ、
IT化、デジタル化、さらにはハラスメント対策でコミュニケーション
に齟齬が生まれつつある企業社会において、プログラミング思考が
大切などというと、「もううんざり」という声も聞こえて来そうだ。だ
が逆だ。プログラミング的思考は、不幸なコミュニケーションを減ら
し、誰もが迷わずに成果を出せるようにするための、「究極の優しさ

（ユーザビリティ）」の設計技術なのだ。

Contents
■ 昭和世代の指示は若手に通じず、AIにも無視されるのか？
■ 「昭和OS」と「令和OS」の思考グセの正体
■ 共通言語としての「プログラミング的思考」
■ 「分解の粒度」を揃える─業務を「原子レベル」まで砕く
■ 思考の解像度を上げる「7つの論理パターン」
■ 「解像度」が低いリーダーはAI時代に淘汰される
■ 「オブジェクト指向」で組織のマイクロマネジメントをなくす
■ 明日から始める「思考のプログラミング」

January1 2026

影響だ。AIは令和世代以上に「空気」を読まない。「よ
しなに」と入力しても、AIは幻覚（ハルシネーション）を
見るか、沈黙するだけだ。指示が論理的でなければ、AI
という最強のツールもただの箱に過ぎない。

「昭和OS」と「令和OS」の思考グセの正体

こうしたギャップを解き明かす前に、まず、私たちが無
意識に使っている「思考のクセ」を客観視してみよう。ど
ちらが良い悪いではない。「昭和OS」と「令和OS」は、
どちらも名作だが、ファイル形式が違うのだ。どんな違い
があるのか。少し抽出してみよう。

まず昭和世代、とくにバブル期や就職氷河期を生き抜
いてきたビジネスパーソンの思考は、
極めて「属人的」で「統合的」だ。
その特徴は、次のようにまとめること
ができそうだ。

特 徴 ① 変 数 が 定 義 されてい な い
（Undefined Variables）：「誠意を見せ
ろ」「常識で考えろ」「よしなに頼む」。
これらの言葉は、受け手の解釈に依
存する「未定義の変数」だ。昭和世
代同士なら「共通の辞書」があるた
め通じるが、他者にはエラーとなる。
特徴②例外処理が現場任せ（Ad-hoc
Exception Handling）：「何かあったら
臨機応変に」。これはシステム設計で
言えば「エラーが起きたら、その場の担当者がなんとかコー
ドを書き換えて対処せよ」という指示に等しい。現場力は
つくが、再現性がない。
特徴③ブラックボックス化したアルゴリズム ：「長年の勘」
や「コツ」という言葉で、プロセスを隠蔽する。入力（Input）
に対してなぜその出力（Output）が出たのか、本人にも
説明できないことが多い。

一方、デジタルネイティブである令和世代。その思考は、
極めて「機能的」で「分割的」だ。
特徴①　構文エラーに厳しい（Syntax Error Strict）：
指示に論理的な矛盾や欠落があると、そこで処理を停止
する。「Aと言ったのにBとも言っている。どちらが正解で
すか？」と、バグを許容しない。
特徴②　ライブラリ依存（Library Dependency）：「マ
ニュアル（ライブラリ）はありますか？」。ゼロから構築する
よりも、既存の正解や型（フレームワーク）を呼び出して
使うことを好む。効率的だが、型がない事態に弱い。
特徴③　局所最適化（Local Optimization）： 与えら

れたタスク（関数）は完璧にこなすが、それがシステム全
体（会社全体）でどう機能するかへの関心が薄い傾向が
ある。「言われたことはやりました（結果はどうあれ）」と
いうスタンスになりがちだ。

共通言語としての「プログラミング的思考」

この２つの違うOSを接続させるには、「翻訳プロトコル」
が必要になる。そしてこの翻訳行為が「構造化」である。
すなわち昭和世代の持つ「豊かな文脈と経験」を、令和
世代が理解できる「明確なロジックと手順」に変換するの
である。この作業ができれば、組織の生産性は劇的に向
上し、AIへの指示（プロンプト）も驚くほど高精度になる。

これは昭和世代に限ったことではない。上の図の左側
にある絡まり合った糸のような状態が、多くのビジネスパー
ソンの頭の中だ。どんな企業人も新人時代は新しいタスク
の連続に慌てふためき、ときに失敗を繰り返してきた。そ
していつしか一見複雑そうなプロセスをいとも軽 し々くこな
せるようになっていく。彼ら彼女らはいつしかベテランや中
堅と呼ばれ、複数の部下を持つリーダーやマネージャーと
なっている。

武道や茶道の用語に「守破離」という言葉がある。経
験の浅いうちはその基本型をひたすら忠実に守ることに徹
し、型を身につけた後はその型を破って、応用・発展させ、
いずれ基本から離れて独自の境地を切り開くという発展の
フェーズを表した言葉だ。守破離はこうした習いごとに限
らず、仕事の基本的な習得プロセスでも見られる。最初
は頭をフル回転させながら、動作を繰り返すが、型が習
得できればいずれ「無意識」に体が動くようになる。仕事
や作業というものはすべからく「無意識」に動かせる、あ
るいは動くようになって「ベテラン」や「達人」と呼ばれ

2

BUSINESS THINKER January 2026

るようになる。だからベテランが「なんとなく」と指示を出
すことは、決して仕事を理解していないということではなく、
言語化するまでもなく、体得している、ということなのである。

だが今の時代、これではAIに指示が出せないどころか、
業務の自動化も、他人への引き継ぎもままならない。

右側にあるのが、プログラミング的思考によって、その「な
んとなく」の仕事が整理された状態だ。入力があり、判
断があり、処理があり、出力がある。一直線に整理され
たフローは、美しく、明確だ。

プログラミングの世界では、曖昧さはバグ（不具合）を
生む。ビジネスも同様だ。指示が曖昧であれば、組織に
バグが生じ、ミスや手戻りというコストが発生する。AI時
代におけるビジネスパーソンの第一の責務は、自らの頭の
中にある「経験」や「勘」というブラックボックスを開き、
それを万人が理解できる「アルゴリズム（手順）」に書き
換えることにある。

「分解の粒度」を揃える
― 業務を「原子レベル」まで砕く

こうした組織にプログラミング的思考を定着させるための
第一歩が、「タスク分解（Decomposition）」である。こ
こで問題になるのが「解像度（かいぞうど）」あるいは「粒
度（りゅうど）」である。ときに上司にとっての「1つのタス
ク」が、部下にとっては「100のタスク」に見えることがあ
る。この粒度のズレが、不幸なすれ違いを生む。

１）「チャンク（塊）」を「プロセス（処理）」に割る
とかく昭和世代は業務を大きな「塊」で捉えがちだ。だ

から下の世代からは “雑” な指示に見えてしまう。例を挙
げてみよう。

昭和の上司がこう言ったとする。「A社向けの提案書を
作って」。

これは典型的な「巨大チャンク」だ。令和世代の脳内
パソコンには、まるっと「A社向け提案書を作る」というア
プリはインストールされていないのだ。だから「処理します
か？」ではなく「そのアプリはお使いのPCには入っていま
せん」と表示されて固まってしまうのである。

しかし構造化された指示だとこうなる。

①「A社の過去の取引データを抽出する（Input）」
②「競合B社の動向をWebでリサーチする（Process）」
③� 「当社の新商品のメリットを3点箇条書きにする
　（Process）」

④「�パワーポイントの社内テンプレート『タイプC』に流
し込む（Output）」

このように、チャンクを「動詞」と「目的語」のセットに
分解してみる。よりプログラミング的に言えば、巨大な関数
を、小さな関数（サブモジュール）に分割する作業である。

２）粒度を揃える「15分ルール」
では、どこまで細かくすればいいのだろう。目安となるの

が「15分ルール」だ。つまり「1つのタスクが15分〜30
分で完了するサイズ」まで分解するのだ。

たとえば「企画を考えて」は、ラーメン屋で「なんかお
いしいの出して」と言うのと同じくらい粒度が粗い注文だ。
店側としては、「しょうゆなのか、味噌なのか、それともチャー
ハンなのか」くらいは知りたいところだ。

一方、企画のプロセスを分解し「類似事例を5つ検索す
る」（15分）とすれば、適切な粒度と言える。

このサイズまで分解されていれば、令和世代の部下は迷
わず着手でき、小さな達成感（Small Wins）を積み重ねる
ことができる。そして、この粒度であれば「この15分の作
業はAIに任せられるな」という判断も容易になるのである。

３）ゴールの解像度を上げる「定義（Definition）」
「完了」とはどういう状態か、を定義する。

・×「なる早で」 →	 〇「明日の14時までに」
・×「いい感じに」 →	〇「�PDF形式で、A4版1枚に

収まるように」
・×「�徹底的に」 → 	 〇「�Google検索の検索結果3

ページ目まで確認して」

昭和世代の「形容詞（早い、すごい、丁寧な）」を、
令和世代の「数値・形式（時間、フォーマット、数量）」
に変換する。これが、粒度を揃えるということだ。

思考の解像度を上げる
「7つの論理パターン」

では、具体的にどうすれば思考を構造化できるのか。
実は、どんなに複雑そうに見える巨大システムも、職人の「門
外不出のコツ」も、分解してみると、だいたい同じパター
ンの寄せ集めだ。カレーもラーメンも、ベースは「切る・
炒める・煮る」の繰り返しなのと、そんなに変わらない。

ここでは、ビジネスパーソンが武器として持つべきプログ
ラミングの「基本パターン」と、「7つの論理パターン」を
紹介する。これらはプログラミングの基礎文法であるが、
同時にビジネスを動かすための共通言語でもある。

プログラミングはそもそも大量の同じパターンの作業を効
率よく処理するために生まれた、計算機械のための手法。

3

BUSINESS THINKER January 2026

何かを処理するのだから、処理の開始と終わりがある。そ
の間の処理の方法を書き表す言語がプログラミング言語で
ある。いま巷にはさまざまなプログラミング言語がひしめい
ているが、それぞれ得手不得手がある。厳密に言えば、
プログラミング言語に不得手はない。ただ同じ作業をさせ
るのに時間がかかる言語とそうでもない言語が出てくるだ
け。どの言語に何をさせるかは、指示者の判断となるが、
いずれも基本的な処理手順は同じだ。その手順を図式で
描いたのがフローチャートである。

フローチャートには、処理作業に応じたレゴブロックのよ
うな記号が決められており、この “レゴブロック” の組み
合わせで、処理手順が可視化される。この “レゴブロック”
にはざっと上記図のような記号がある。（図A）

それなりの数だが、基本は次の３つだ。開始と処理、そ

して終了である。つまりビジネスにおいては、「どの記号で
処理を行うか」が重要になる。そしてその処理は次の「判
断・分岐」と「繰り返し（ループ）」の組み合わせで実行
できる。

①単純分岐（IF / ELSE）
─ 判断の最小単位

 すべての判断の基本形が

「単純分岐」だ。「もし条件
Aを満たすならXをする。そ
うでなければYをする」。例えば、「納期まで3日以上ある
か？」という問いに対し、YESなら「通常配送」、NOなら「速
達配送」を選ぶ。昭和のビジネスパーソンはこれを無意識
に行ってきたが、AIに渡すにはこの「分岐点（閾値）」を

言語化しなければならない。「急ぎなら」という言葉は通用
しない。「何時間以内が急ぎなのか」を定義することから、
構造化は始まる。

②複数分岐（Switch）
─「ケースバイケース」の正体

 「状況による」という言葉で思

考停止していないだろうか。それ
を分解するのがこのパターンだ。
たとえば顧客のランクが「VIP」か「一般」か「新規」か
によって、対応を変えるとしよう。このとき重要なのは、想
定されるすべてのケースを洗い出し、そのどれにも当ては
まらない「その他（Default）」の処理を決めておくことだ。
ここが抜けていると、想定外の事態が起きたときにAIはフ
リーズし、現場はパニックに陥る。

③複合条件（AND / OR）
─ リスク管理の要

 「金額が100万円以上」かつ

（AND）「初回の取引」ならば、
部長決裁が必要。「クレーム履歴
がある」または（OR）「担当者が不在」ならば、マネージャー
に転送。このように複数の条件を組み合わせる際、AND

（かつ）なのかOR（または）なのかを厳密に区別するこ
とは、リスク管理そのものだ。特にOR条件は、どちらか
１つでも当てはまれば発動するため、安全策やアラート機
能として使われることが多い。この論理が曖昧だと、重大
なコンプライアンス違反や事故につながる。

図A

4

BUSINESS THINKER January 2026

④全件処理（For Loop＜ループ＞）
─「忙しさ」の正体を暴く

リストにある100件の顧客すべ

てにメールを送る。月末に100枚
の請求書を処理する─このように

「決まった回数だけ同じ処理を繰
り返す」のがForループだ。多くのビジネスパーソンが「忙
しい」と感じている業務の正体は、実はこのループ処理を
人間が手作業で行っていることにある。「毎日同じことを繰
り返している」と気づいたら、それはあなたのやるべき仕
事ではない。ループ処理こそ、コンピュータが最も得意とし、
疲れを知らずに正確にこなせる領域だ。ここを自動化でき
るかどうかが、生産性の分水嶺となる。

⑤条件付き反復（While Loop＜ループ＞）
─終わりのない仕事に終止符を打つ

「顧客が納得するまで説明する」

「品質基準を満たすまで修正す
る」。Forループと違い、回数が
決まっておらず「条件が満たされ
るまで繰り返す」のがWhileルー
プだ。ここはブラック労働の温床になりやすい。「納得する
まで」とは具体的にどの状態か？ 無限ループに陥らないた
めの「脱出条件（Exit）」は設定されているか？ 管理職は、
部下の業務が無限ループに入らないよう、この構造を設計
する責任がある。

⑥例外処理（Try / Catch）
─プロの仕事はここに宿る

システムエラー、配送の遅延、

顧客の急なキャンセル……。「通
常ルート」から外れたときにどう動
くか。これをあらかじめ設計して
おくのが例外処理だ。未熟な設計者は「うまくいった場合」
のルートしか考えない。しかし、現実のビジネスは想定外
の連続だ。「もしエラーが起きたら（Catch）、サポートセ
ンターに通知し、顧客にはお詫びメールを自動送信する」。
このように失敗時の挙動を定義しておくことで、システム（お
よび組織）は止まることなく動き続けることができる。AIは

「想定外」に弱い。だからこそ、ここを人間が設計する
必要があるのだ。

⑦人間とAIの分担判定

そして最後にこれからの時代に

不可欠なのが「この判断はAIに
任せるか、人間がやるか」という
メタな分岐。現代の最重要分岐
である。

ここのポイントは「ルール化でき、過去のデータがあり、
責任の所在が明確」ならばAI。「倫理的判断が必要で、
共感が求められ、最終責任を負う必要がある」ならば人間。
この仕分けができる人こそが、AI時代のリテラシーを持っ
たリーダーと言える。

７つの論理の基本は「判断・分岐」だ。そしてどうなっ
たら作業を終えられるのかを設定することだ。

業界別・「条件分岐」のツボ

ではこれらの論理パターンは、実際の現場でどのように
使われているのだろうか。業界別のケーススタディで見て
みよう。そこには、各業界のプロフェッショナルたちが無意
識に行ってきた「思考の型」が見えてくる。

①製造業：品質を守る「止める勇気」の論理化として

 製造ラインにおいて最も重要な判断は「いつラインを止
めるか」だ。

ここでは「単純分岐」と「AND条件」が組み合わさっ
ている。

 「不良品が出たか（YES/NO）」だけでなく、「連続し
て発生したか（AND）」という条件を加えることで、偶発
的なエラーとシステム的な欠陥を区別している。「なんとなく
おかしい」で止めていては生産性が落ちる。しかし止めな
ければ大量の不良品が出る。このギリギリの判断基準（閾
値）を「3回連続したら停止」と数値化・構造化すること
で、はじめて自動監視システムや画像認識AIに判断を委
譲できる。トヨタの「アンドン」システムは、まさにこの例外
処理を物理的な仕組みに落とし込んだ好例と言える。

5

BUSINESS THINKER January 2026

②小売・サービス業：機会損失を防ぐ「在庫」の論理

 「売れているのに在庫がない」「売れないのに在庫があ

る」─小売の悲劇は、判断の遅れから生まれる。
ここでは「複数分岐」が鍵となる。売上が「好調」な

ら追加発注、「不調」かつ「シーズン終了間近」なら値下げ、
「不調」だが「シーズン序盤」なら陳列変更。熟練の店
長はこれを肌感覚で行うが、それでは多店舗展開ができ
ない。ユニクロやコンビニエンスストアの強さは、この「発
注・値下げのアルゴリズム」がシステム化され、全店で高
速に回っている点にある。1週間の判断遅れが利益を消し
飛ぶ世界では、思考の構造化は生存戦略そのものだ。

③管理・事務：組織の信頼を作る「ブレない」論理

経費精算や稟議承認。ここでは「公平性」という名の「一

貫性」が求められる。「あの人の申請は通るのに、私のは
通らない──」。こうした不満は、判断ロジックがブラック
ボックス化していることから生まれる。人間が判断すると、
どうしても「まあ今回は特別に」というノイズが入ってしまう。
そこで「予算内なら自動承認」「超過なら差し戻し」とい
うシンプルな「IF/ELSE」を徹底し、システムに実装する
ことで、組織の透明性は高まる。公平であるべき事務処
理こそ、感情を持たないアルゴリズムに任せるべき領域で
ある。

プログラミング的思考こそが
「最強のプロンプト」である

ここまで解説した「構造化」のスキルは、生成AIへの
指示出し（プロンプト）において、そのまま使える。なぜなら、
AIが使用する大規模言語モデル（LLM）は、確率的に
次の言葉を予測するマシンであり、論理的な制約（ガイド
レール）を与えない限り、もっともらしい嘘（ハルシネー
ション）をついたり、平凡な回答に終始したりするからだ。
よくAIが嘘を吐くと言って騙された気分になっているのは、
前提の条件と、このガイドレールの設定が曖昧だからなの
だ。たとえば単純に「日本の総理大臣は？」とだけ尋ね
た場合、質問者の意図や前提条件を共有していないAIは、

「いま現在の総理」以外の名前を返すこともある。
これは、たとえば昭和世代のビジネスパーソンが、「電

話をかけて」と若手に指示するときに、指でダイヤルを回
すジェスチャーを見せたりするのと同じで、スマホ世代に
は意味の通じない行為なのである。

今、日本は、人口減少や移民問題、国防、防災、イン
フラ強化など、国家の基盤が揺らぐような大きな岐路に立っ
ている。なかでも静かにかつ大きく広がっているのが、デ
ジタルデバイドならぬ「AIデバイド」である。

日本の社会における生成AI利用は世界の後塵を拝して
いる。総務省の情報通信白書（令和7年版：2025年公表）
では、日本の個人の生成AI利用経験は 26.7%で、中国
81.2%、米国 68.8%、ドイツ 59.2%などと比べて圧倒的に
低い。しかも、利用者は学生のほうが多く、社会人の利用
は学生が約45％に対して、社会人が25％（デル・テクノ
ロジーズ関連調査［2024年］など）と、社会人が少ない。
つまり現役のビジネスパーソンが生成AIの利用法を身につ
けることは、あらゆる組織の喫緊の課題なのである。

おそらく、多くのビジネスパーソンは理解しているだろう。
しかし積極的になれないのは、間接的な言い回しを特徴と
する日本語に支えられてきた昭和的な曖昧さと、日本人の
分厚い暗黙知がそのニーズを阻んでいるからと思われる。

プログラミング思考を身につけることは、昭和的な「あ
いまい指示」から、抜け出すきっかけを与え、自ずと構造
化された「プログラミング的指示」に変化していく。たとえ
ば次のように。

X 昭和OS的プロンプト（Bad Case）
 「来月の新商品の販促キャンペーンの企画書を、いい感じ
に書いておいて。ターゲットは若者で、エモい感じで頼むよ」

この指示は、変数（Variables）が定義されておらず、
解像度も低い。では、どこを構造化すべきか。

6

BUSINESS THINKER January 2026

・「いい感じ」とは？ → 	評価関数が未定義。
・「若者」とは？ → 	� 変数の範囲（Scope）が広すぎる。

Z世代か？ ミレニアル世代か？
・「エモい」とは？ → 	� 出力パラメータが主観的すぎる。

O 構造化プロンプト（Good Case）
対して、プログラミング的思考を持つリーダーは、こう指

示する。

#命令：あなたは「熟練のマーケティングプランナー」
として振る舞ってください（役割の定義）。当社の
新商品「完全栄養食クッキー」の販促企画案を作
成してください（ゴールの設定）。
#変数定義（Variables）
• �ターゲット: 都内に住む入社1〜3年目の社会人

女性。忙しくて朝食を抜きがち。
•�課題（Pain）: 健康は気になるが、自炊する時
間も気力もない。

•�ゴール（KPI）: コンビニでのトライアル購入数 1
万個。

#制約条件（Constraints）
• 予算は500万円以内。
• タレントは起用しない。
•「�エモい」の定義：「頑張りすぎない丁寧な暮らし」

への憧れを刺激するトーン＆マナー。
#�出力形式（Output Format） 以下のフォーマッ
トで出力すること。

1. キャッチコピー（3案）
2. 施策概要（SNSとリアル店舗の連動）
3. スケジュール（フェーズ分けすること）

ここの指示には、ここまで述べてきた論理パターンがす
べて詰まっている。「役割」を定義し、「変数」に具体的
な値を代入し、「制約条件」で例外を排除し、「出力形式」
でフォーマットを指定している。

これ は、 一 般 言 語 で 行うプログラミング（Natural
Language Programming）である。
「AIを使いこなす力」とは、ITツールの操作スキルでは
なく、「自分の要望を論理的な要件定義書に落とし込む国
語力」にほかならないのだ。

「解像度」が低いリーダーは
AI時代に淘汰される

ここまで見てきたように、プログラミング的思考とは、業

務をいかに「解像度高く」捉えることができるかにかかって
いる。「解像度」とは、画像のピクセル数のようなもの。解
像度が低いリーダーは、業務を「営業活動」「事務処理」
といった大きな塊（モジュール）でしか捉えられない。その
ため、AIに指示を出す際も「売上を上げて」「効率化して」
といった、実行不可能な命令しか出せない。

一方、解像度が高いリーダーは、業務を「顧客リストの
抽出」「アポイントメールの送信」「商談」「見積書作成」といっ
たプロセスに分解し、さらにそれぞれの工程における「判
断基準（条件分岐）」や「例外対応」まで見えている。

AIは「具体的」で「論理的」な指示しか受け付けないから、
業務の解像度が低い人間は、AIという強力なエンジンのア
クセルを踏むことができなくなる。かつては「大雑把だが器
の大きい親分肌」のリーダーがガンガンアクセルを吹かし
ていたかもしれないが、これからは違う。緻密に業務を設
計し、メンバーとAIに最適なタスクを配分できる、言語化
がうまい「設計者型」のリーダーが組織を成長させる。

「オブジェクト指向」で
組織のマイクロマネジメントをなくす

このプログラミング的思考を身につけると、課題の抽出
力が高まり、その解決手段を見出して、組織で動かしや
すいような構造化がしやすくなる。そしてこのプログラミン
グ思考を進めていくと、その先にある概念にたどり着く。
それが「オブジェクト指向」である。オブジェクト指向を経
営に応用すると、煩わしいマイクロマネジメントから解放さ
れるようになる。

つまり、組織の誰もが、目的に対して自律的に動けるよ
うになるのだ。

オブジェクト指向を身に着けた上司は、たとえばこんな
指示を与える。

• �カプセル化（Encapsulation）： 「営業チーム」という
オブジェクトに対し、「今月の売上目標1億円」というメッ
セージ（入力）だけを送る。その内部で「どうやってテ
レアポするか」「誰が訪問するか」という詳細な処理（メ
ソッド）は、チーム内部にカプセル化され、外部からは
干渉されない。

• �インターフェース（Interface）： 上司が気にするべき
は、内部のプロセスではなく、「正しく成果物（Output）
が出てくるか」というインターフェース（接続口）の設計
だけだ。だから上司がすべきことは「月末にこのフォー
マットで報告書が出てくれば、途中経過は問わない」と
決めることだ。

7

BUSINESS THINKER January 2026

〈書籍〉●『アルゴリズム図鑑』石田保輝／宮崎修一［翔泳社］●『具体
と抽象』細谷功［dZERO］●『イシューからはじめよ』安宅和人［英治出版］
●『解像度を上げる』馬田隆明［英治出版］●『プログラミング的思考
の授業』中島聡［SB クリエイティブ］●『トヨタの自工程完結』佐々木
眞一［ダイヤモンド社］

〈WEB〉●経済産業省「リスキリングを通じたキャリアアップ支援事
業」● IPA 独立行政法人 情報処理推進機構「DX 白書」● Udemy
Business「非エンジニアのためのプログラミング思考」講座● Harvard
Business Review「AI 時代のマネジメント」関連論文　ほか

参考

POINT
■ �昭和OS（文脈依存）と令和OS（マニュアル依存）の互換性エラーを解消するのが「プログラミ

ング的思考（構造化）」である。
■ �「タスク分解」の粒度は「15分でできること」「動詞＋目的語」まで細分化し、AIや若手が即実

行可能な状態にする。
■ �「IF/ELSE（条件分岐）」でベテランの勘をルール化し、「Switch（複数分岐）」でケースバイケー

スを撲滅する。
■ �「Loop（繰り返し）」業務は人間の仕事ではない。根性論を捨てて自動化・AI化を断行せよ。
■ �「Try/Catch（例外処理）」を設計することで、若手の心理的安全性を確保し、組織のリスク耐

性を高める。
■ �小売・営業・物流・医療など、あらゆる業界の「属人化」した業務は、論理パターンに当てはめ

ることで「資産化」できる。
■ �AI時代の人間の役割は、業務を遂行することではなく、業務の構造を「設計（デザイン）」する

ことにシフトする。

つまり部下に「任せるのが怖い」上司が、「任せるのが
うまい」上司に変わる。任せるのが怖い上司は、このインター
フェース設計ができていない。

 「何を（Input）」「いつまでに（期限）」「どんな形で
（Output）」返してくれればOKか。ここさえ握れていれば、
上司はプロジェクトの “鍋のフタ” を、いちいち開けに行か
なくて済む。途中経過のたびに味見されるシチューほど、作っ
ている側のテンションが下がるものはないのだから。

部下を「手足」ではなく、独立した機能を持つ「モジュー
ル」として信頼し、接続する。これこそが、変化に強い「疎
結合（Loose Coupling）」な組織をつくる鍵となる。

明日から始める「思考のプログラミング」

プログラミング思考を身にまとうためには別にコードを書
く必要はない。ただすべきトレーニングは、自分の仕事を「フ
ローチャート」にしてみることだ。

PowerPointや手書きのノートで構わない。うまく形が描
けないという人も大丈夫だ。今なら1000円程度でフロー
チャートとテンプレートが手に入る。

手始めに朝起きてから会社に行くまでのルーティン、あ
るいは日々のメールチェックの手順を、四角（処理）とひ
し形（判断）で描いてみる。すると、驚くほど多くの「曖
昧な判断」や「無駄なループ」が見つかるはずだ。

たとえば「メールを確認する」という処理の中に、「重
要なら返信、不要なら削除」という分岐があるだろう。そ
こで解像度を上げるのだ。「重要」の定義は何か？ 送信
者か？ タイトルか？と。

あるいは「資料を作る」という処理は、実は「情報を集
める」「構成を考える」「執筆する」「推敲する」という複
数の処理の連続ではないか、と。

このように思考を可視化・構造化していくプロセスこそが、
プログラミング思考の獲得プロセスである。そして、一度
構造化されてしまえば、その一部を「ChatGPTに任せる」

「RPAで自動化する」という判断が容易になる。
AIという「黒船」は、私たちに「人間はどう思考すべき

か」という根源的な問いを突きつけている。曖昧な「空気」
の世界から抜け出し、鮮明な「論理」の世界へ。思考の
OSをアップデートした者だけが、この進化の時代を楽しみ、
新たな価値を創造できるのである。

【あなたの思考OSチェック】

□ 指示を出すとき、「いつまでに」を明確にしている
□ 「いい感じに」「よしなに」を使わない
□ タスクを15-30分サイズに分解できる
□ 例外処理(もし失敗したら)を事前に考えている
□ AIに指示を出すとき、具体的な条件を書いている

【診断結果】
5個	 プログラミング的思考の達人
3 〜 4個	 良好、さらなる向上の余地あり
1 〜 2個	 今日から意識して改善しましょう
0個	� むしろチャンス。この記事が、あなたの

OSアップデート版リリースノートになる。

8

BUSINESS THINKER January 2026

